- Добавил: literator
- Дата: 9-03-2023, 02:10
- Комментариев: 0
Название: Modeling Remaining Useful Life Dynamics in Reliability Engineering
Автор: Pierre Dersin
Издательство: CRC Press
Год: 2023
Страниц: 199
Язык: английский
Формат: pdf (true)
Размер: 20.6 MB
This book applies traditional reliability engineering methods to prognostics and health management (PHM), looking at remaining useful life (RUL) and its dynamics, to enable engineers to effectively and accurately predict machinery and systems useful lifespan. One of the key tools used in defining and implementing predictive maintenance policies is the RUL indicator. However, it is essential to account for the uncertainty inherent to the RUL, as otherwise predictive maintenance strategies can be incorrect. This can cause high costs or, alternatively, inappropriate decisions. Methods used to estimate RUL are numerous and diverse and, broadly speaking, fall into three categories: model-based, data-driven, or hybrid, which uses both. The author starts by building on established theory and looks at traditional reliability engineering methods through their relation to PHM requirements and presents the concept of RUL loss rate. Following on from this, the author presents an innovative general method for defining a nonlinear transformation enabling the mean residual life to become a linear function of time.
Автор: Pierre Dersin
Издательство: CRC Press
Год: 2023
Страниц: 199
Язык: английский
Формат: pdf (true)
Размер: 20.6 MB
This book applies traditional reliability engineering methods to prognostics and health management (PHM), looking at remaining useful life (RUL) and its dynamics, to enable engineers to effectively and accurately predict machinery and systems useful lifespan. One of the key tools used in defining and implementing predictive maintenance policies is the RUL indicator. However, it is essential to account for the uncertainty inherent to the RUL, as otherwise predictive maintenance strategies can be incorrect. This can cause high costs or, alternatively, inappropriate decisions. Methods used to estimate RUL are numerous and diverse and, broadly speaking, fall into three categories: model-based, data-driven, or hybrid, which uses both. The author starts by building on established theory and looks at traditional reliability engineering methods through their relation to PHM requirements and presents the concept of RUL loss rate. Following on from this, the author presents an innovative general method for defining a nonlinear transformation enabling the mean residual life to become a linear function of time.