- Добавил: literator
- Дата: 11-10-2024, 13:40
- Комментариев: 0
Название: Integrated Microelectronic Devices: Physics and Modeling
Автор: J.A. del Alamo
Издательство: Pearson
Год: 2017
Страниц: 868
Язык: английский
Формат: pdf (true)
Размер: 28.4 MB
A modern take on microelectronic device engineering. Microelectronics is a 50-year-old engineering discipline still undergoing rapid evolution and societal adoption. Integrated Microelectronic Devices: Physics and Modeling fills the need for a rigorous description of semiconductor device physics that is relevant to modern nanoelectronics. The central goal is to present the fundamentals of semiconductor device operation with relevance to modern integrated microelectronics. Emphasis is devoted to frequency response, layout, geometrical effects, parasitic issues and modeling in integrated microelectronics devices (transistors and diodes). In addition to this focus, the concepts learned here are highly applicable in other device contexts. The central goal of this book is to present the fundamentals of semiconductor device operation with relevance to modern integrated microelectronics (as opposed to, say, photonics, energy conversion devices, or power electronics). This means that no optical devices nor power devices of any kind are described. In contrast, emphasis is devoted to frequency response, layout, geometrical effects, parasitic issues and modeling in integrated microelectronics devices (transistors and diodes). In spite of this focus, the concepts learned here are highly applicable in other device contexts. This book should be a great resource for a broad range of students with a diverse set of interests.
Автор: J.A. del Alamo
Издательство: Pearson
Год: 2017
Страниц: 868
Язык: английский
Формат: pdf (true)
Размер: 28.4 MB
A modern take on microelectronic device engineering. Microelectronics is a 50-year-old engineering discipline still undergoing rapid evolution and societal adoption. Integrated Microelectronic Devices: Physics and Modeling fills the need for a rigorous description of semiconductor device physics that is relevant to modern nanoelectronics. The central goal is to present the fundamentals of semiconductor device operation with relevance to modern integrated microelectronics. Emphasis is devoted to frequency response, layout, geometrical effects, parasitic issues and modeling in integrated microelectronics devices (transistors and diodes). In addition to this focus, the concepts learned here are highly applicable in other device contexts. The central goal of this book is to present the fundamentals of semiconductor device operation with relevance to modern integrated microelectronics (as opposed to, say, photonics, energy conversion devices, or power electronics). This means that no optical devices nor power devices of any kind are described. In contrast, emphasis is devoted to frequency response, layout, geometrical effects, parasitic issues and modeling in integrated microelectronics devices (transistors and diodes). In spite of this focus, the concepts learned here are highly applicable in other device contexts. This book should be a great resource for a broad range of students with a diverse set of interests.