- Добавил: literator
- Дата: 14-08-2024, 05:28
- Комментариев: 0
Название: DataFrame Manipulation: Theory and Applications With Python and Tkinter
Автор: Vivian Siahaan, Rismon Hasiholan Sianipar
Издательство: Balige Publishing
Год: 2024
Страниц: 747
Язык: английский
Формат: epub
Размер: 18.2 MB
A DataFrame is a crucial data structure in Pandas, a versatile Python library for data manipulation and analysis. It is designed to handle two-dimensional, labeled data similar to a spreadsheet or SQL table, facilitating operations such as filtering, sorting, grouping, and aggregating. DataFrames can be created from various data sources, including lists, dictionaries, or NumPy arrays. They offer robust data handling features, including managing missing values and performing input/output operations with diverse file formats. Key capabilities of DataFrames include hierarchical indexing, time series functionality, and integration with libraries like NumPy and Matplotlib, which are essential for efficient data analysis and transforming raw data into actionable insights. Several projects in this book demonstrate practical applications of DataFrames and Tkinter for data analysis. Tkinter-based GUI applications are used in various projects to interact with and visualize data. For instance, one project features a Tkinter GUI that allows users to filter and view sales data interactively, while another enables filtering and viewing of movie data based on release year and rating. Additional projects involve building GUIs to manage and visualize synthetic data for different applications, such as sales, temperature, and medical data. These applications integrate pandas for data manipulation, Tkinter for user interfaces, and Matplotlib for graphical representations, providing comprehensive tools for exploring, analyzing, and visualizing data.
Автор: Vivian Siahaan, Rismon Hasiholan Sianipar
Издательство: Balige Publishing
Год: 2024
Страниц: 747
Язык: английский
Формат: epub
Размер: 18.2 MB
A DataFrame is a crucial data structure in Pandas, a versatile Python library for data manipulation and analysis. It is designed to handle two-dimensional, labeled data similar to a spreadsheet or SQL table, facilitating operations such as filtering, sorting, grouping, and aggregating. DataFrames can be created from various data sources, including lists, dictionaries, or NumPy arrays. They offer robust data handling features, including managing missing values and performing input/output operations with diverse file formats. Key capabilities of DataFrames include hierarchical indexing, time series functionality, and integration with libraries like NumPy and Matplotlib, which are essential for efficient data analysis and transforming raw data into actionable insights. Several projects in this book demonstrate practical applications of DataFrames and Tkinter for data analysis. Tkinter-based GUI applications are used in various projects to interact with and visualize data. For instance, one project features a Tkinter GUI that allows users to filter and view sales data interactively, while another enables filtering and viewing of movie data based on release year and rating. Additional projects involve building GUIs to manage and visualize synthetic data for different applications, such as sales, temperature, and medical data. These applications integrate pandas for data manipulation, Tkinter for user interfaces, and Matplotlib for graphical representations, providing comprehensive tools for exploring, analyzing, and visualizing data.