LitMy.ru - литература в один клик

Advancing Recommender Systems with Graph Convolutional Networks

  • Добавил: literator
  • Дата: Вчера, 07:16
  • Комментариев: 0
Название: Advancing Recommender Systems with Graph Convolutional Networks
Автор: Fan Liu, Liqiang Nie
Издательство: Springer
Год: 2025
Страниц: 166
Язык: английский
Формат: pdf (true), epub
Размер: 10.1 MB

This book systematically examines scalability and effectiveness challenges related to the application of graph convolutional networks (GCNs) in recommender systems. By effectively modeling graph structures, GCNs excel in capturing high-order relationships between users and items, enabling the creation of enriched and expressive representations.

The book focuses on two overarching problem categories: the first area deals with problems specific to GCN-based recommendation models, including over-smoothing, noisy neighboring nodes, and interpretability limitations. The second one encompasses broader challenges in recommendation systems that GCN-based methods are particularly well-suited to address as the attribute missing problem or feature misalignment. Through rigorous exploration of these challenges, this book presents innovative GCN-based solutions to push the boundaries of recommender system design. To this end, techniques such as interest-aware message-passing strategy, cluster-based collaborative filtering, semantic aspects extraction, attribute-aware attention mechanisms, and light graph transformer are presented.

Each chapter combines theoretical insights with practical implementations and experimental validation, offering a comprehensive resource for researchers, advanced professionals, and graduate students alike.

Скачать Advancing Recommender Systems with Graph Convolutional Networks












[related-news] [/related-news]
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.