- Добавил: buratino
- Дата: 19-05-2020, 01:12
- Комментариев: 0
Название: Introducing MLOps (Early Release)
Автор: Clement Stenac, Leo Dreyfus-Schmidt, Kenji Lefevre, Nicolas Omont, and Mark Treveil
Издательство: O’Reilly Media
Год: 2020-05-19
Формат: epub/pdf(conv.)
Размер: 10 Mb
Язык: English
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Instead, many of these ML models do nothing more than provide static insights in a slideshow. If they aren’t truly operational, these models can’t possibly do what you’ve trained them to do.
This report introduces practical concepts to help data scientists and application engineers operationalize ML models to drive real business change. Through lessons based on numerous projects around the world, six experts in data analytics provide an applied four-step approach—Build, Manage, Deploy and Integrate, and Monitor—for creating ML-infused applications within your organization.
Автор: Clement Stenac, Leo Dreyfus-Schmidt, Kenji Lefevre, Nicolas Omont, and Mark Treveil
Издательство: O’Reilly Media
Год: 2020-05-19
Формат: epub/pdf(conv.)
Размер: 10 Mb
Язык: English
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Instead, many of these ML models do nothing more than provide static insights in a slideshow. If they aren’t truly operational, these models can’t possibly do what you’ve trained them to do.
This report introduces practical concepts to help data scientists and application engineers operationalize ML models to drive real business change. Through lessons based on numerous projects around the world, six experts in data analytics provide an applied four-step approach—Build, Manage, Deploy and Integrate, and Monitor—for creating ML-infused applications within your organization.