LitMy.ru - литература в один клик

Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing with Apache Hadoop 2

  • Добавил: bhaer
  • Дата: 4-06-2017, 10:45
  • Комментариев: 0

Название: Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing with Apache Hadoop 2
Автор: Arun Murthy
Издательство: Addison-Wesley Professional
Год: 2014
Страниц: 400
Формат: PDF, EPUB, MOBI
Размер: 51 Mb
Язык: English

The Insider’s Guide to Building Distributed, Big Data Applications with Apache Hadoop™ YARN

Apache Hadoop is helping drive the Big Data revolution. Now, its data processing has been completely overhauled: Apache Hadoop YARN provides resource management at data center scale and easier ways to create distributed applications that process petabytes of data. And now in Apache Hadoop™ YARN, two Hadoop technical leaders show you how to develop new applications and adapt existing code to fully leverage these revolutionary advances.

YARN project founder Arun Murthy and project lead Vinod Kumar Vavilapalli demonstrate how YARN increases scalability and cluster utilization, enables new programming models and services, and opens new options beyond Java and batch processing. They walk you through the entire YARN project lifecycle, from installation through deployment.

You’ll find many examples drawn from the authors’ cutting-edge experience—first as Hadoop’s earliest developers and implementers at Yahoo! and now as Hortonworks developers moving the platform forward and helping customers succeed with it.

Coverage includes
YARN’s goals, design, architecture, and components—how it expands the Apache Hadoop ecosystem
Exploring YARN on a single node
Administering YARN clusters and Capacity Scheduler
Running existing MapReduce applications
Developing a large-scale clustered YARN application
Discovering new open source frameworks that run under YARN












[related-news] [/related-news]
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.