- Добавил: alexcat
- Дата: 22-11-2020, 20:19
- Комментариев: 0

Название: Topology of Infinite-Dimensional Manifolds
Автор: Katsuro Sakai
Издательство: Springer
Год: 2020
Формат: PDF
Страниц: 631
Размер: 14,34 МБ
Язык: English
An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology).