LitMy.ru - литература в один клик

Deep Learning Classifiers with Memristive Networks: Theory and Applications

  • Добавил: buratino
  • Дата: 14-04-2020, 09:45
  • Комментариев: 0
Название: Deep Learning Classifiers with Memristive Networks: Theory and Applications (Modeling and Optimization in Science and Technologies Book 14)
Автор: Alex Pappachen James (Editor)
Издательство: Springer
Год: 2020
Формат: true pdf/epub
Страниц: 216
Размер: 40.7 Mb
Язык: English

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.











[related-news] [/related-news]
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.